Team members

- Professor Nick Brown and Caen Ang, UTK
- · Drs Xunxiang Hu and Yutai Katoh, ORNL
- Professor David Sprouster, Stony Brook

Goal

 To develop and mature high-temperature, highly moderating materials for SMR application.

What is the technology?

- Engineered, two-phase moderators
 - matrix phase: good moderation structural integrity
 - entrained phase: high moderation
- Radiation stable, lifetime components operating at > 600°C.
- A practical route to reducing cost lies in simplification and ultimate safety.
 Technologies enabling this include:
 - Zero release fuel form (FCM-SiC/TRISO)
 - Core conduction to ambient under LOCA
 - Compact, lifetime SMR.
 - Replace core graphite with high performance moderator

Current Opinion in Solid State and Materials Science

journal homepage: www.elsevier.com/locate/cossms

Motivation for utilizing new high-performance advanced materials in nuclear energy systems

S.J. Zinkle a,b,*, K.A. Terrani b, L.L. Snead c

COSSMS 2016

Year

How is your system transformational?

- AdMod Sys. 1 : Be 2ndPhase Materials
- AdMod Sys. 2 : ZrH 2nd Phase Materials
- Advanced moderator will allow more compact and safer core. Direct economic benefit from size and enhanced portability. Significant advantage gained if technology augments argument for reduced EPZ.
- Advanced manufacturing (i.e. Direct Current Sintering) is now allowing engineered structures (amalgams) of vastly different melting temperatures by "getting in under the kinetics."

	Slowing Down Power ζ*Σ*	Tmelt (Tdecamp) °C	Irradiate Perf, (~500°C, >20 dpa)	Therm. Cond. (650°C) W/m-K
Graphite	0.077	>(3000)	Poor	~20
CVD SiC	0.044	(2860)	Excellent	~80
ZrH	0.859	(>850)	unknown	~17
MgQ	0.060	2853	Excellent	~50
Be ₂ C	0.125	(~2100)	unknown	~22
ZrBe ₁₃	0.129	1525	unknown	~40
TiBe ₁₂	0.138	1925	unknown	
BeQ	0.124	2507	V.Bad,	~30
			anisotropic	
Be	0.16	1287	Bad	~60

The MEITNER team applied an advanced manufacturing approach to patent the fundamental methods and mass production of FCM fuel.

The team will apply a similar approach to AdMod.

What challenges do you anticipate?

- Ad-Mod System 1: ZrH
 - Loading and Control of ZrH
 - Loss of H at Temperature/Irradiation
 - Ability to and Stability of Cladding
- Ad-Mod System 2: Be-based systems
 - Suppressing matrix sintering temp.
 - Entraining toxic material
 - Thermal stability
- Robust and viable materials systems
 - Viable neutronics and safe reactor core
 - Economics from fabrication to system
- TEA

